Corresponding Standard Reference Material Data used in Partial Least Squares Regression Models for Sugar Composition Estimates in Biomass in: Economic Impact of Yield and Composition Variation in Bioenergy Crops: Populus trichocarpa (for corresponding manuscript: DOI: 10.1002/bbb.2148)
PDF Files: Images of 1H NMR spectra for neutralized 2-stage acid hydrolysates of 4 NIST Standard Reference Material biomass samples (Monterey Pine 8493, Sugarcane Bagasse 8491, Wheat Straw 8494, and Eastern Cottonwood/Poplar 8492) and 2 Center for Bioenergy Innovation reference biomass samples (Poplar - Populus trichocarpa and Switchgrass - Panicum Virgatum). Suppression of the water peak was achieved using a NOESY-1D with presaturation, a recycle delay of 5 s, and a total of 64 scans. Spectra were acquired at 298 K and processed with automatic phase correction, baseline correction, and chemical shift referencing to TSP-d4. Images show all 1H data from 10 to 1ppm with inset spectra of region of interest (4.0 to 3.1 ppm).
Text Files: Spectra for neutralized 2-stage acid hydrolysates of 4 NIST Standard Reference Material biomass samples (Monterey Pine 8493, Sugarcane Bagasse 8491, Wheat Straw 8494, and Eastern Cottonwood/Poplar 8492) and 2 Center for Bioenergy Innovation reference biomass samples (Poplar - Populus trichocarpa and Switchgrass - Panicum Virgatum) were converted into text files for plotting. Files contain 8192 points of raw spectral data from 12.23 to -2.78 ppm. The text file contains 4 columns of data and includes: Point number, Intensity, Hz, and ppm.
Xcel Spreadsheet: HPLC measured monomeric sugar concentrations and bucketed 1H NMR data used to build monomeric sugar composition prediction models. Sugar composition in biomass determined from HPLC analyses are given in mg sugar/mg of biomass. Spectral bucketing was performed using Bruker’s AMIX software. Spectra were divided into 0.005 ppm buckets in the region of 3.10– 4.15 ppm for a total of 210 buckets. Headers for the bucketed data are the chemical shift in ppm of the center of the bucket. Bucketed data was used to build partial least squares models for subsequent predictions in The Unscrambler v. 10.5(CAMO A/S, Trondheim, Norway). The formation of methanol during hydrolysis interferes with the quantitative NMR analysis of sugars, so the methanol peak centered at 3.37 ppm and spanning four buckets (3.2925 – 3.2775 ppm) was set to zero for all spectra.
PDF Files: Images of 1H NMR spectra for neutralized 2-stage acid hydrolysates of 4 NIST Standard Reference Material biomass samples (Monterey Pine 8493, Sugarcane Bagasse 8491, Wheat Straw 8494, and Eastern Cottonwood/Poplar 8492) and 2 Center for Bioenergy Innovation reference biomass samples (Poplar - Populus trichocarpa and Switchgrass - Panicum Virgatum). Suppression of the water peak was achieved using a NOESY-1D with presaturation, a recycle delay of 5 s, and a total of 64 scans. Spectra were acquired at 298 K and processed with automatic phase correction, baseline correction, and chemical shift referencing to TSP-d4. Images show all 1H data from 10 to 1ppm with inset spectra of region of interest (4.0 to 3.1 ppm).
Text Files: Spectra for neutralized 2-stage acid hydrolysates of 4 NIST Standard Reference Material biomass samples (Monterey Pine 8493, Sugarcane Bagasse 8491, Wheat Straw 8494, and Eastern Cottonwood/Poplar 8492) and 2 Center for Bioenergy Innovation reference biomass samples (Poplar - Populus trichocarpa and Switchgrass - Panicum Virgatum) were converted into text files for plotting. Files contain 8192 points of raw spectral data from 12.23 to -2.78 ppm. The text file contains 4 columns of data and includes: Point number, Intensity, Hz, and ppm.
Xcel Spreadsheet: HPLC measured monomeric sugar concentrations and bucketed 1H NMR data used to build monomeric sugar composition prediction models. Sugar composition in biomass determined from HPLC analyses are given in mg sugar/mg of biomass. Spectral bucketing was performed using Bruker’s AMIX software. Spectra were divided into 0.005 ppm buckets in the region of 3.10– 4.15 ppm for a total of 210 buckets. Headers for the bucketed data are the chemical shift in ppm of the center of the bucket. Bucketed data was used to build partial least squares models for subsequent predictions in The Unscrambler v. 10.5(CAMO A/S, Trondheim, Norway). The formation of methanol during hydrolysis interferes with the quantitative NMR analysis of sugars, so the methanol peak centered at 3.37 ppm and spanning four buckets (3.2925 – 3.2775 ppm) was set to zero for all spectra.
Name | Size | Type | Resource Description | History |
---|---|---|---|---|
Model Calibration NMR data for Economic Impact of Populus Composition TEA paper | 0 KB | Website | LabKey Link for Corresponding Standard Reference Material Data used in Partial Least Squares Regression Models for Sugar Composition Estimates in Biomass in: Economic Impact of Yield and Composition Variation in Bioenergy Crops: Populus trichocarpa |
Submitted
• Mar •
16
2022
Renewable Resources and Enabling Sciences Center
Cite This Dataset
Happs, Renee, Andrew Bartling, Crissa Doeppke, Anne Ware, Robin Clark, Erin Webb, Mary Biddy, Jay Chen, Gerald Tuskan, Mark Davis, Stanton Martin, Wellington Muchero, and Brian Davison. 2022. "Corresponding Standard Reference Material Data used in Partial Least Squares Regression Models for Sugar Composition Estimates in Biomass in: Economic Impact of Yield and Composition Variation in Bioenergy Crops: Populus trichocarpa." NREL Data Catalog. Golden, CO: National Renewable Energy Laboratory. Last updated: December 12, 2023. DOI: 10.7799/1855400.
About This Dataset
188
10.7799/1855400
NREL/JA-2800-75650
Public
12/12/2023
DOE Project
Center for Bioenergy Innovation
Facilities
Biomass & Biosciences Research (BBR)
Funding Organization
Department of Energy (DOE)
Sponsoring Organization
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Research Areas
Bioenergy
Chemistry
License
View License
Digital Object Identifier
10.7799/1855400